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Abstract
In this paper, we experimentally compare major
approval-based multiwinner voting rules. To this
end, we define a measure of similarity between two
equal-sized committees subject to a given election.
Using synthetic elections coming from several dis-
tributions, we analyze how similar are the commit-
tees provided by prominent voting rules. Our re-
sults can be visualized as “maps of voting rules”,
which provide a counterpoint to a purely axiomatic
classification of voting rules. The strength of our
proposed method is its independence from preim-
posed classifications (such as the satisfaction of
concrete axioms), and that it indeed offers a much
finer distinction than the current state of axiomatic
analysis.

1 Introduction
Multiwinner voting is the process of selecting a fixed num-
ber of candidates (a committee) based on the preferences of
agents. This general task occurs in a wide range of appli-
cations such as group recommendations [Lu and Boutilier,
2011; Gawron and Faliszewski, 2022], blockchain protocols
[Cevallos and Stewart, 2021], political elections [Renwick
and Pilet, 2016; Brill et al., 2018], and the design of Q&A
platforms [Israel and Brill, 2021]. As it is apparent from this
diverse list of applications, there is a multitude of desiderata
for multiwinner voting rules and their desirability depends on
the setting in which they are applied. Elkind et al. [2017] and
Faliszewski et al. [2017b] suggest a classification of multi-
winner voting rules based on three principles: proportionality,
diversity and individual excellence. These principles capture
three main goals in multiwinner voting: (i) to find a com-
mittee that reflects the voters’ preferences in a proportional
manner, (ii) to find a committee that represents (or, covers)
the opinions of as many voters as possible (diversity), and
(iii) to find a committee that contains the objectively “best”
candidates (individual excellence).

In recent years, a large body of work has helped to
shape our understanding of multiwinner voting rules (as
surveyed by Faliszewski et al. [2017b] and Lackner and

Skowron [2023]). The key method employed here is ax-
iomatic analysis. Among the three aforementioned princi-
ples, proportionality has received the most attention and there
now exists a hierarchy of proportionality axioms by which the
proportionality of a voting rule can be assessed [Lackner and
Skowron, 2023, Chapter 4]. Far fewer axioms exist for di-
versity and individual excellence [Faliszewski et al., 2017a;
Subiza and Peris, 2017; Faliszewski and Talmon, 2018;
Lackner and Skowron, 2021].

While the axiomatic method has been fundamental in ad-
vancing our understanding of multiwinner rules, significant
questions cannot be approached with axioms. First and fore-
most, the satisfaction of an axiom is a binary fact. If an ax-
iom is not satisfied by a voting rule, this might be due to a
fundamental incompatibility that is evidenced in nearly ev-
ery election or simply due to an involved counterexample that
hardly occurs in practice (an extreme example is provided in
the work of Brandt et al. [2013], which disproved an over 20-
year-old conjecture by giving a counterexample with 10136

candidates; however, a much smaller example was later re-
ported by Brandt and Seedig [2013]). Secondly, while the ax-
iomatic approach is useful to highlight differences between
voting rules, it is rarely helpful to establish similarities. Even
voting rules that do not share (known) axiomatic properties
can behave very similarly on sampled or real-world prefer-
ence data. Identifying similar voting rules is important, e.g.,
if a computationally demanding rule is infeasible in a given
setting and has to be replaced with a faster-to-compute one.

The goal of our paper is to close this gap in our un-
derstanding and provide a principled method to assess the
similarity of voting rules. Our proposed method does not
rely on preimposed classifications (such as the proportional-
ity/diversity/individual excellence trichotomy) and, instead,
we base our analysis on comparing the committees provided
by the rules. Specifically, given a distance measure between
candidates (which we interpret as a measure of their simi-
larity), we extend it to committees and compare how close
are the committees output by a number of major multiwinner
rules on several families of synthetic elections. For the visual-
ization of our results, we adapt the map framework proposed
by Szufa et al. [2020] and Boehmer et al. [2021] to display
voting rules instead of elections.



Our distances between candidates depend solely on which
voters approve them. For example, if two candidates are ap-
proved by the same voters, then we view them as being at
distance zero, and if the voters can be partitioned into those
approving either one candidate or the other, then we view
these candidates as maximally distant. To measure the dis-
tance between two committees, we first build a bipartite graph
with members of one committee on the left and members of
the other committee on the right, where each two candidates
(from the other committees) are connected by an edge whose
weight is equal to their distance. The distance of the commit-
tees is the weight of the minimum-weight perfect matching in
this graph. Our main findings are as follows:

1. We show that computing two most distant committees
in a given election is intractable in many settings. This
is somewhat unfortunate, as such committees would be
useful to normalize the distances between committees.
Due to this hardness result, in the remainder of the paper
we normalize by observed maximum distances.

2. We compute the committees output by various multiwin-
ner rules on a number of synthetic elections and com-
pute the average distances between committees provided
by different rules. We find that committees provided
by Multiwinner Approval Voting (AV), Chamberlin–
Courant (CC), and Minimax Approval Voting tend to be
the most distinct ones, while those provided by propor-
tional rules are between those of AV and CC (often, but
not always, closer to AV), and far away from those of
Minimax.

3. For a number of proportionality axioms, we report how
often the committees output by various rules satisfy
them. Surprisingly, our experiments show that the com-
mittees provided by proportional voting rules (on sam-
pled profiles) generally satisfy stronger proportionality
properties than their axiomatic analysis reveals. In par-
ticular, we find that some axiomatic distinctions are not
observable in our data set of 6000 instances.

All in all, we find that all proportional rules—including those
that fail some of the stronger proportionality axioms—are
more or less similar to each other and form a well-defined
cluster.

2 Preliminaries
For a given graph G = (V (G), E(G)) and a vertex x ∈
V (G), by N(x) we denote the neighbors of x (i.e., the set
{y ∈ V (G) : (x, y) ∈ E(G)}) and by deg(x) we denote the
degree of x (i.e., deg(x) = |N(x)|).

2.1 Elections
We consider the approval preference model. An election E =
(C, V ) consists of a set C = {c1, . . . , cm} of candidates and
a collection V = (v1, . . . , vn) of voters, where each voter vi
is endowed with a set of candidates that they approve. For
a voter v we denote his or her approval set as A(v), and for
a candidate c we write A(c) to denote the set of voters that
approve c. Whenever we use this notation, the election in
question will be clear from the context.

2.2 Multiwinner Voting Rules
An approval-based multiwinner voting rule is a function f
that given an election E = (C, V ) and committee size k,
k ≤ |C|, provides a family f(E, k) of size-k subsets of C,
referred to as the winning committees.

We give a brief overview of major approval-based multi-
winner voting rule. We omit technical details and refer to
the survey by Lackner and Skowron [2023] for details. We
assume that all voting rules use a tiebreaking mechanism to
ensure that they return exactly one winning committee (this
property is known as resoluteness).1

Thiele methods are an important class of approval-based
multiwinner voting rules that select a committee W maxi-
mizing value scw(W ) =

∑
v∈V

∑|A(v)∩W |
i=1 w(i) for some

score function w. In particular, Multiwinner Approval Vot-
ing (AV) is defined by w(i) = i (equivalently, AV selects
the k candidates that are approved by the largest number
of voters). This rule is considered to be the prime exam-
ple of the principle of individual excellence. Chamberlin–
Courant (CC) selects the committee W that maximizes the
number of voters that approve at least one candidate in W ,
i.e., w(1) = 1 and w(i) = 0 for all i ̸= 1. CC is an example
of a rule designed to achieve diversity. Proportional Approval
Voting (PAV) and Sainte-Laguë Approval Voting (SLAV) are
defined by w(i) = 1

i and w(i) = 1
2i−1 , respectively. Fi-

nally, p-Geometric rules are defined by w(i) = p−i for pos-
itive constants p. The weights of PAV can be viewed as the
most proportional choice in this spectrum [Aziz et al., 2017;
Sánchez-Fernández et al., 2017]; weight functions that de-
crease more quickly than that of PAV (such as those used by
SLAV and p-Geometric rules) give more importance to small
groups (degressive proportionality).

Sequential Thiele methods, also referred to as greedy
Thiele rules in the literature, iteratively build a committee by
adding the candidate that increases the score scw most, start-
ing with the empty committee and iterating until k candidates
are selected. We consider seq-PAV, seq-SLAV, and seq-CC.
Greedy Monroe [Skowron et al., 2015] is a rule similar to seq-
CC, with an additional constraint that each committee mem-
ber can represent at most n/k many voters.

Satisfaction Approval Voting (SAV) is defined similarly to
AV and selects a committee W maximizing

∑
v∈V

|A(v)∩W |
|A(v)| .

Minimax Approval Voting (MAV) [Brams et al., 2007] selects
a committee W that minimizes maxv∈V |A(v) \W |+ |W \
A(v)|, i.e., it minimizes the maximum Hamming distance be-
tween a voter and the chosen committee.

Finally, we describe the intuition behind two slightly more
complex rules: Sequential Phragmén (seq-Phragmén) [Brill
et al., 2023] and the method of Equal Shares [Peters and
Skowron, 2020]. Both can be understood as mechanisms
where voters use (virtual) budget to jointly pay for the se-
lection of candidates in the committee. The cost of adding a
candidate is set (arbitrarily) to 1. With seq-Phragmén, voters
start with a budget of 0, which is increased continuously un-

1On the technical level, in our experiments we use the implemen-
tations of the rules provided in the abcvoting library [Lackner et
al., 2023], together with their default tie-breaking.
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til a group of voters can pay for the first candidate. The cost
(of 1) is shared among the members of the group and the pro-
cess repeats until the committee is filled. With Equal Shares,
voters start with a budget of k/n. Each round, a candidate is
selected that requires the least budget per voter. This proce-
dure may result in fewer than k committee members (since
the budget is fixed in advance), in which case seq-Phragmén
is used to fill the committee. We refer to the works of Lackner
et al. [2023] and Peters and Skowron [2020] for details.

2.3 Proportionality
Much of the recent progress in multiwinner voting has been
dedicated to the concept of proportionality, to formally define
proportionality and to identify voting rules behaving propor-
tionally. Since our framework enables us to identify similar
voting rules, we are able to ask whether “proportional” rules
are indeed similar. To this end, we consider four proportion-
ality axioms. These axioms apply to committees and a voting
rule is said to satisfy such a property if it is guaranteed to
return committees exhibiting this property.
Definition 1 (Sánchez-Fernández et al. 2017). Given an elec-
tion E = (C, V ), a committee W of size k satisfies Propor-
tional Justified Representation (PJR) if there is no group of
agents N ⊆ V of size |N | ≥ ℓ · n

k that jointly approves at
least ℓ common candidates and

∣∣⋃
v∈N A(v) ∩W

∣∣ < ℓ.
PJR is satisfied by PAV, seq-Phragmén, Equal Shares, and

Greedy Monroe2 (among the rules introduced in Section 2.2).
Definition 2 (Aziz et al. 2017). Given an election E =
(C, V ), a committee W of size k satisfies Extended Justified
Representation (EJR) if there is no group of agents N ⊆ V
of size |N | ≥ ℓ · n

k that jointly approves at least ℓ common
candidates and for each voter v ∈ N , |A(v) ∩W | < ℓ.

EJR strengthens PJR and is satisfied only by PAV and
Equal Shares. Finally, Justified Representation (JR) is the
special case of PJR (and EJR) restricted to ℓ = 1.

Priceability [Peters and Skowron, 2020] is a notion of pro-
portionality based on assigning budget to voters.
Definition 3. Given an election E = (C, V ), a committee W
satisfies priceability if there is a budget b ≥ 0 and for each
voter vi a spending function bi : C → R≥0 such that:

1. for each vi ∈ V ,
∑

c∈C bi(c) ≤ b (voters do not spend
more than b),

2. for each vi ∈ V , if c /∈ A(vi) then bi(c) = 0 (voters do
not pay for candidates they do not approve),

3. if c ∈ W then
∑

vi∈V bi(c) = 1 and otherwise this value
is 0 (payments only for committee members), and

4. for each c /∈ W ,
∑

vi∈A(c)

(
b−

∑
c′∈W bi(c

′)
)

≤ 1

(there is no candidate left that could be bought with
more than a budget of 1).

Priceability establishes fairness by distributing the same
amount of budget to each voter and requiring that no can-
didate could be bought with a smaller amount (condition 4).
Priceability implies PJR and is incomparable to EJR. It is sat-
isfied by seq-Phragmén and Equal Shares.

2It satisfies PJR if k divides n [Sánchez-Fernández et al., 2017].

2.4 Statistical Cultures
Below, we define the statistical cultures that we use for gen-
erating synthetic instances of approval elections.
Resampling Model. The resampling model is parameterized

by two values, p ∈ [0, 1] and ϕ ∈ [0, 1], where the first
one describes the average number of approvals in a vote,
and the second one describes the level of disturbance. To
generate an election, we first sample a central ballot by
approving uniformly at random ⌊pm⌋ candidates. Then,
to generate a vote, we proceed as follows. For each can-
didate in the central ballot, we add him or her to the vote
with probability 1−ϕ, and with probability ϕ we resam-
ple that candidate, that is, we add him or her to the ballot
with probability p. For each candidate outside the cen-
tral ballot, with probability 1 − ϕ, we keep him or her
outside the ballot, and with probability ϕ we resample
him or her.

Disjoint Model. The disjoint model has three parameters,
p ∈ [0, 1], ϕ ∈ [0, 1], and g ∈ N\{0}. It is similar to the
resampling model, but instead of a single central ballot
we have g central ballots. At the beginning, we sample
g disjoint central ballots uniformly at random (each of
them approving ⌊pm⌋ candidates, and then proceed in
the same manner as before, however before generating
each vote, we uniformly at random select one of our g
central ballots on which our vote will be based.

Euclidean Models. The Euclidean model is parameterized
by a radius r ∈ R+. For each voter and each candi-
date we sample their ideal point in the t-dimensional Eu-
clidean space (uniform in a t-dimensional cube). Then,
each voter approves all the candidates within radius r.

Party-list Model. The party-list model is parameterized by
α and g. First, we divide the candidates into g groups
of size ⌊m/g⌋ each; we refer to these groups as the par-
ties. (If m mod g ̸= 0 then some candidates remain
unapproved.) Second, we create an urn which contains
a single vote for each party, approving exactly its mem-
bers. Then, we iteratively generate votes (one at a time):
We draw a vote from the urn, add its copy to the election,
and return the vote to the urn together with αg copies.

Pabulib Model. We also use real-life participatory budget-
ing (PB) data from Pabulib [Stolicki et al., 2020], which
we treat as a statistical culture over approval elections
(in particular, we omit details related to PB, such as the
costs of the candidates). We selected 21 instances, i.e.,
all that contain at least 100 candidates and 100 voters,
and where the average number of approved candidates
per voter is at least 3 (for instances with truncated ordi-
nal ballots, we convert them to approval ones by approv-
ing all candidates that were ranked). To sample an elec-
tion from Pabulib, we first uniformly at random choose
one of the original 21 instances, then we randomly select
a subset of 100 candidates and a random subset of 100
voters. We omit voters who cast empty ballots.

The resampling and disjoint models are due to Szufa et
al. [2022]. Various Euclidean models are commonly used
in the literature on elections [Enelow and Hinich, 1984;
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Enelow and Hinich, 1990]; we point to the recent works of
Bredereck et al. [2019] and Godziszewski et al. [2021], which
use them in the approval setting. The party-list model is an
adaptation of the Polya-Eggenberger urn model [Berg, 1985;
McCabe-Dansted and Slinko, 2006].

3 Similarity Between Committees
Our idea of comparing voting rules is based on measuring the
similarity between the committees that they produce.

3.1 Basic Framework
Fix some election E = (C, V ) with candidate set C =
{c1, . . . , cm} and voter collection V = (v1, . . . , vn). We as-
sume that we have some distance d over the candidates, such
that if d(ci, cj) is small—for whatever “small” means under a
given distance—then candidates ci and cj are similar, and if it
is large then they are not. In the most basic setting we could
take the discrete distance, where disc(ci, cj) = 0 exactly if
i = j and disc(ci, cj) = 1 for every other case. Later we will
discuss two more distances.

Let X = {x1, . . . , xk} and Y = {y1, . . . , yk} be two size-
k committees over C. We extend d to act on committees as
follows: We form a bipartite graph with members of X as the
vertices on the left, members of Y as the vertices on the right,
and where for each x ∈ X and each y ∈ Y we have an edge
with weight d(x, y); if some candidate c belongs to both X
and Y , then we have two copies of c, one on the left and one
on the right. The distance d(X,Y ) between X and Y is the
weight of the minimum-weight matching in this graph. One
can verify that it indeed is a pseudodistance.

Proposition 1. For each (pseudo)distance d over the candi-
dates, its above-described extension to committees is a pseu-
dodistance.

Proof. Let X = {x1, . . . , xk}, Y = {y1, . . . , yk}, and
Z = {z1, . . . , zk} be three size-k committees from the
same election. By definition of d, we immediately get that
d(X,X) = 0 and d(X,Y ) = d(Y,X). It remains to show
that d(X,Y ) ≤ d(X,Z)+ d(Z,X). By reordering the mem-
bers of X , Y , and Z, we can assume that:

d(X,Z) = d(x1, z1) + · · ·+ d(xk, zk), and
d(Z, Y ) = d(z1, y1) + · · ·+ d(zk, yk).

Since d is a distance, for each i ∈ [k] we have d(xi, yi) ≤
d(xi, zi) + d(zi, yi). Further, we know that d(X,Y ) ≤
d(x1, yi) + · · · + d(xk, yk) (because instead of using the
lowest-weight matching we use some fixed one). By putting
these inequalities together, we get that, indeed, d(X,Y ) ≤
d(X,Z) + d(Z, Y ).

Let us now consider concrete distance measures between
candidates, all of which are well-known distances (cf. [Deza
and Deza, 2016]). The discrete distance is a rather radical ap-
proach as it stipulates that no two candidates are ever similar
to each other. Yet, one could argue that there are cases where
some candidates are clearly more similar to each other than
others.

Example 1. Consider an election E = (C, V ) with C =
{p, q, r, s} and voter collection V = {v1, v2, v3, v4). The
approval sets are as follows:

A(v1) = {p}, A(v2) = {q, s},
A(v3) = {p, r, s}, A(v4) = {q}.

One could argue that candidates p and q are completely dis-
similar because they are approved by complementary sets of
voters. On the other hand, half of the voters who approve
p also approve r, and every voter who approves r also ap-
proves p. The similarity between p and s seems a bit weaker
than that between p and r because there is a voter who ap-
proves s but does not approve p.

In addition to the discrete one, we consider the following
two distances between the candidates (we assume some elec-
tion E with n voters):

1. The Hamming distance between candidates c and d, de-
noted by ham(c, d), is the number of voters that ap-
prove one of them but not the other. Formally, we have
ham(c, d) = |A(c) \A(d)|+ |A(d) \A(c)|.

2. The Jaccard distance between candidates c and d is de-
fined as jac(c, d) = 1− |A(c)∩A(d)|

|A(c)∪A(d)| =
ham(c,d)

|A(c)∪A(d)| .

There are two main differences between the Hamming and the
Jaccard distances. The less important one is that the former
is not normalized and can assume values between 0 and n,
whereas the latter always assumes values between 0 and 1.
Occasionally, we will speak of normalized Hamming distance
nham(c, d) = 1/n · ham(c, d).

The more important difference is in how both distances in-
terpret lack of an approval for a candidate. Under the Ham-
ming distance, we assume that it is a conscious decision, indi-
cating that a voter disapproves of a candidate. Hence, if nei-
ther candidate c nor d is approved by a voter, then Hamming
distance interprets it as a sign of similarity between them.3
Under the Jaccard distance, we assume that we cannot make
any such conclusions.

Example 2. Let us consider the election from Example 1.
We have the following normalized Hamming and Jaccard dis-
tances between the candidates:

nham(p, q) = 1, jac(p, q) = 1,

nham(p, r) = 1/4, jac(p, r) = 1/2,

nham(p, s) = 1/2, jac(p, s) = 2/3,

nham(q, r) = 3/4, jac(q, r) = 1.

As our intuition from Example 1 suggested, both our dis-
tances indicate that candidate p is completely dissimilar from
candidate q, and is more similar to r than to s. However, ac-
cording to the normalized Hamming distance q and r are not
completely dissimilar, whereas they are at maximum distance
according to Jaccard.

3Yet, a voter might dislike c and d for two different reasons—
e.g., one is too liberal and the other is not liberal enough, which
makes this approach questionable.
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3.2 Hardness of Finding Farthest Committees
Given an election and a committee size, it is convenient to
know what is the largest possible distance between two com-
mittees. In particular, one could use this value to normalize
distances between committees provided by various rules. Un-
fortunately, it turns out that finding two farthest committees
under a given distance is often intractable and in our experi-
ments we will resort to normalizing by largest observed dis-
tances. We define the FARTHEST COMMITTEES problem as
follows.
Definition 4. In the FARTHEST COMMITTEES problem (FC)
we are given an election (C, V ), an integer k, and a pseu-
dodistance d over the candidates. The goal is to output two
committees, each of size k, which maximize the distance d
between them.

FC can be considered also in its decision variant, where we
ask if there are two size-k committees whose distance is at
least a given value.

FC under the discrete distance is trivially polynomial-time
solvable. In Theorem 1 we show that FC is computation-
ally hard in the cases of the Hamming distance and the Jac-
card distance. This comes through a reduction from the BAL-
ANCED BICLIQUE problem defined as follows.
Definition 5. In the BALANCED BICLIQUE problem (BB) we
are given a bipartite graph G = (AG ∪ BG, EG) and an
integer kG. The question is whether there exists a biclique of
size kG × kG in G (kG-biclique), i.e., a set of vertices X ∪ Y
such that X ⊆ AG, Y ⊆ BG, |X| = |Y | = kG and for every
x ∈ X, y ∈ Y we have (x, y) ∈ EG.
BB is known to be NP-hard [Garey and Johnson, 1979, p.
196] and W[1]-hard w.r.t. kG [Lin, 2018].

The idea of the reduction is to encode vertices by candi-
dates and edges by large distances (no-edges are represented
by slightly smaller distances). A technical issue is to define
proper votes in order to: 1) achieve required relation between
the distances and, 2) forbid taking candidates to one commit-
tee that come from both parts of the input bipartite graph.
Theorem 1. FARTHEST COMMITTEES is NP-hard and
W[1]-hard w.r.t. k (the size of committees), even in the case
of the Hamming distance or the Jaccard distance.

Proof. First we show the theorem for the Jaccard distance.
The reduction is from BALANCED BICLIQUE (BB). We take
an instance (G = (AG∪BG, EG), kG) of BB and produce an
instance of the decision version of FARTHEST COMMITTEES
(FC) with the Jaccard distance.

For every vertex x ∈ AG ∪ BG we define a candidate x ∈
C. Thus, |C| = |AG ∪BG|. We overload the notation and by
x we mean both a vertex x from the graph G and a candidate
x from C. This is due to the bijection between them.

We define the votes as follows. There is one voter vA with
an approval set AG and one voter vB with an approval set
BG. Then, for every x ∈ AG we define a voter vx with an
approval set {x} ∪ (BG \N(x)) (recall that N(x) means the
neighbors of x). Hence, we have |V | = |AG|+ 2.

We ask for an existence of two committees of size k = kG
with the Jaccard distance equal to k (indeed, k is the largest
possible Jaccard distance between two size-k committees).

In order to show correctness of the reduction, it suffices
to prove the following lemma which implies that only k-
bicliques correspond to committees at Jaccard distance k.

Lemma 1. For every X,Y ⊆ AG ∪BG, |X| = |Y | = k, the
following equivalence holds: (X,Y ) is a k-biclique in G if
and only if jac(X,Y ) = k.

The proof is available in the full version of the paper.
It is straightforward to see that the reduction runs in poly-

nomial time. Hence, NP-hardness of FC follows from NP-
hardness of BB [Garey and Johnson, 1979, p. 196]. Further-
more, BB is W[1]-hard w.r.t. kG [Lin, 2018] and we have
k = kG, so indeed, FC is W[1]-hard w.r.t. k.

In the case of the Hamming distance we use the same re-
duction with the following changes: (1) Instead of one voter
vA we add |AG| many voters vA; (2) Instead of one voter
vB we add |AG| many voters vB ; (3) We add |AG| many
degree-correcting voters who do not approve any candidates
from AG but, for every candidate y ∈ BG, exactly deg(y)
many of them approve y; (4) We ask for an existence of
two committees of size k with the Hamming distance equal
to k · (3|AG| + 1). After such modifications we still have
C = AG ∪BG, but we have |V | = 4 · |AG|.

In order to show correctness of the reduction it is enough
to prove the following lemma.

Lemma 2. For every X,Y ⊆ AG ∪ BG, |X| = |Y | = k,
the following equivalence holds: (X,Y ) is a biclique of size
k × k in G if and only if ham(X,Y ) = k · (3|AG|+ 1).

The proof is available in the full version of the paper.

FC with the normalized Hamming distance is also NP-hard
because its objective function is just scaled compared to the
Hamming distance.

Parameterized Hardness.
A brute-force algorithm for FARTHEST COMMITTEES (for
any distance measure) runs in time m2k · poly(n,m) (by
evaluating all possible pairs of k-sized committees). Unfor-
tunately, we cannot hope for large improvements over this as
stated below.

Proposition 2. Under a randomized version of the Exponen-
tial Time Hypothesis, there is no (n+m)o(

√
k)-time algorithm

for FARTHEST COMMITTEES. This holds even for the Ham-
ming distance and for the Jaccard distance.

Proof. The result follows from hardness of BALANCED BI-
CLIQUE [Lin, 2018], which excludes (under the same hypoth-
esis) existence of |VG|o(

√
k)-time algorithm. Using our re-

duction from Theorem 1 and the fact that n = O(|VG|),m =
O(|VG|), the theorem follows.

Naturally, FC is FPT w.r.t. m (for any distance measure)
by a brute-force algorithm which evaluates

(
m
k

)2 ≤ 4m many
pairs of committees.

Next, we show that FC is FPT w.r.t. n + k, although the
dependence on a parameter is double-exponential.
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Rule Resampling Disjoint Party-list 1D 2D Pabulib

Equal Shares 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

seq-Phragmén 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

PAV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

seq-PAV 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SLAV 1.0 1.0 1.0 1.0 0.95 1.0 1.0 1.0 0.36 1.0 1.0 1.0 0.88 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

seq-SLAV 1.0 1.0 1.0 1.0 0.95 1.0 1.0 1.0 0.36 1.0 1.0 1.0 0.86 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Greedy Monroe 1.0 1.0 1.0 1.0 0.88 1.0 1.0 1.0 0.29 1.0 1.0 1.0 0.78 1.0 1.0 1.0 0.93 1.0 1.0 1.0 0.95 1.0 1.0 1.0

Geom. 2 1.0 1.0 1.0 1.0 0.95 1.0 1.0 1.0 0.14 0.55 0.55 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Geom. 3 0.99 1.0 1.0 1.0 0.87 0.99 0.99 1.0 0.03 0.3 0.3 1.0 0.88 1.0 1.0 1.0 0.99 1.0 1.0 1.0 0.97 1.0 1.0 1.0

Geom. 4 0.96 1.0 1.0 1.0 0.82 0.98 0.98 1.0 0.02 0.23 0.23 1.0 0.77 1.0 1.0 1.0 0.96 1.0 1.0 1.0 0.93 1.0 1.0 1.0

Geom. 5 0.93 1.0 1.0 1.0 0.79 0.98 0.98 1.0 0.01 0.2 0.2 1.0 0.68 1.0 1.0 1.0 0.93 1.0 1.0 1.0 0.88 1.0 1.0 1.0

SAV 1.0 1.0 1.0 1.0 0.5 0.64 0.64 0.64 0.06 0.08 0.08 0.08 0.0 0.01 0.01 0.01 0.0 0.06 0.06 0.06 0.84 1.0 1.0 1.0

AV 1.0 1.0 1.0 1.0 0.49 0.63 0.63 0.63 0.06 0.08 0.08 0.08 0.0 0.01 0.01 0.01 0.01 0.12 0.12 0.12 0.91 0.98 0.98 0.98

Minimax AV 0.71 0.99 0.99 0.99 0.46 0.89 0.89 0.98 0.0 0.05 0.05 1.0 0.0 0.09 0.09 0.09 0.02 0.28 0.28 0.28 0.59 0.86 0.86 0.86

seq-CC 0.97 1.0 1.0 1.0 0.62 0.88 0.88 1.0 0.0 0.06 0.06 1.0 0.23 0.99 0.99 1.0 0.47 0.99 0.99 1.0 0.58 1.0 1.0 1.0

CC 0.21 0.61 0.65 1.0 0.62 0.85 0.86 1.0 0.0 0.04 0.04 1.0 0.23 0.98 0.99 1.0 0.42 0.98 0.99 1.0 0.56 1.0 1.0 1.0

Table 1: Fraction of instances satisfying priceability, EJR, PJR, and JR—presented respectively (from left to right). If 1.0 is
printed in bold, the corresponding axiom is guaranteed by the voting rule.

Figure 1: Maps of multiwinner rules. Label “G-p” refers to the p-Geometric rule. The red area highlights proportional rules.

Theorem 2. For a given candidate pseudodistance function
d(x, y), which is a function of A(x) and A(y) only, FAR-
THEST COMMITTEES under d is FPT w.r.t. n+ k.

Proof. We say that two candidates x, y have the same type
if they are approved by the same voters, i.e., A(x) = A(y).
Let us denote the number of candidate types by t. Clearly, we
have t ≤ 2n. We find a solution by guessing how many candi-
dates of every type are in both committees. For one commit-
tee there are at most kt ≤ k2

n

many choices. Hence, we can
find a solution after k2

n+1

many checks, each in polynomial
time (by computing the minimum-weight matching).

Using more involved arguments we show that FC is FPT
w.r.t. n. Such algorithm can be useful in the case when the
committee size k is much larger than n.
Theorem 3. For a given candidate pseudodistance function
d(x, y), which is a function of A(x) and A(y) only, FAR-
THEST COMMITTEES under d is FPT w.r.t. n.

The proof is available in the full version of the paper. The
main technique used to provide this result is formulating FC
as an Integer Linear Program (ILP) with the number of inte-
ger variables and the number of constraints being a function
of n. Then, it is enough to apply the result of Lenstra [1983]
for solving ILPs. The main idea for the ILP is to consider
types of candidates—defined for every candidate c as a sub-
set of voters that approve c, i.e., A(c). There are at most 2n
types of candidates. Notice that two candidates of the same
type have exactly the same distances to any other candidate.
Hence, for each candidate type, by two integer variables we
encode how many candidates of this type are included in both
committees. Then, the objective function is to maximize the
weight of a b-matching (a matching in which a vertex can be
matched multiple times) according to the capacities defined
by the integer variables. The main technical issue we faced
is ensuring that the achieved matching of maximum weight is
also the minimum-weight matching among the chosen candi-
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dates. We overcome this obstacle by adding 25
n

constraints
(one for every cycle in a bipartite graph in which vertices rep-
resent types of candidates).

4 Map of Rules
In this section, we present our Map of Multiwinner Voting
Rules. The map is constructed in the following way. First,
we generate a number of elections from several statistical cul-
tures (details are described later in the text). Second, we com-
pute winning committees under the considered voting rules.
We impose resoluteness, i.e., each rule outputs exactly one
winning committee. Third, we compute the distances be-
tween winning committees using the Jaccard distance (we
chose it over Hamming due to the way it interprets the lack of
an approval for a candidate). For each election, we normalize
the Jaccard distance by dividing it by the largest distance be-
tween two committees, outputted by our voting rules, for that
election. For each two rules and each statistical culture, we
compute the average distance between the rules’ committees;
this gives us distance matrices for the cultures. We embed
these matrices in 2D-Euclidean space using a variant of the
algorithm of Kamada and Kawai [1989], as implemented by
Sapała [2022]. If two rules output similar winning commit-
tees, then we view these two rules as similar; the algorithm
places such rules close to one another on the map.4 While dif-
ferent runs of the algorithm (on the same distance data) may
give somewhat different maps, the outputs tend to be similar,
and we believe that the maps give good intuitions regarding
the relative distances between the rules.

4.1 Experimental Setup.
We generated 6000 instances with 100 candidates and 100
voters from the six following statistical cultures (1000 elec-
tions per culture): 1D-Euclidean with r = 0.05, 2D-
Euclidean with r = 0.2, resampling with p = 0.1 and
ϕ ∈ {0, 1

999 ,
2

999 , . . . ,
998
999 , 1}, disjoint with p = 0.1, ϕ ∈

{0, 1
999 ,

2
999 , . . . ,

998
999 , 1}, and g = 10, party-list with g = 10,

and the Pabulib model. For all instances, we use a committee
size of k = 10.

4.2 Experimental Results.
Results for priceability, EJR, PJR, and JR are presented in Ta-
ble 1. Even though only Equal Shares and seq-Phragmén for-
mally satisfy priceability, for all instances that we generated,
the committees provided by PAV and seq-PAV also satisfied
priceability. Moreover, seq-Phragmén and seq-PAV satisfy
EJR on all instances despite seq-Phragmén only guaranteeing
PJR [Brill et al., 2023] and seq-PAV not even JR [Aziz et al.,
2017]. These results indicate that instances witnessing that,
e.g., seq-PAV fails EJR are rare. In turn, we can conclude that
rules such as seq-PAV have stronger proportionality proper-
ties than their axiomatic analysis reveals.

Let us briefly discuss the existence of cohesive groups in
our data, i.e., groups N ⊆ V with |N | ≥ ℓ · n

k that jointly
approves at least ℓ common candidates. If, for some reason,

4The code for the experiments is available at https://github.com/
Project-PRAGMA/Map-of-Rules-IJCAI-2023.

our data did not contain cohesive groups for ℓ ≥ 2, then the
notions of EJR, PJR and JR would coincide; this would ren-
der this comparison meaningless. However, this is not the
case. For example, for the Disjoint model, 311 of 1000 in-
stances have cohesive groups with ℓ = 2; for the Resampling
model this holds for 717 of 1000 instances. Further, for some
models, one can see that JR is significantly easier to satisfy
than, say, EJR. This is particularly apparent for CC, which is
guaranteed to satisfy JR but fails both PJR and EJR. Finally,
we note that our results also support the conclusion by Bred-
ereck et al. [2019] that—under many statistical cultures—
committees satisfying JR often also satisfy PJR and EJR.

For three of our models, that is, disjoint, 1D-Euclidean,
and Pabulib, we present maps of multiwinner voting rules;
see Figure 1 (each map is based on 1000 elections gener-
ated for the respective culture). We start by analyzing the
left map for the disjoint model. On the “west” side of the
map, we have the CC voting rule; this area can be interpreted
as representing diversity: the rules located in this area select
committees that consist of diverse candidates. On the “east”
side of the map we have AV; this area can be interpreted as
representing individual excellence: the rules located here se-
lect committees that consist of individually best candidates,
not taking into account whether the selected candidates are
similar to each other or not. In the central part of the map
(highlighted in red), we have numerous rules considered to
be proportional, such as the PAV rule or seq-Phragmén. Note
that Geometric rules are close to the “cluster” of proportional
rules, but their distance increases for larger p-values. Finally,
in the “south” area we have Minimax AV, which is differ-
ent from all the other rules. Importantly, this separation of
diverse, proportional and individually excellent rules arises
naturally in our model.

As for the central map, which is based on 1D-Euclidean
elections, the overall location of the rules is similar. How-
ever, the “proportional cluster” is shifted toward CC. More-
over, SAV is more different from AV than in the previous
map. As 1D Euclidean is a simpler model, we generally see
fewer details in this map.

Finally, consider the map based on real-life elections from
Pabulib. Here, we see more pronounced differences (as in the
disjoint model). Interestingly, PAV and seq-PAV are almost
indistinguishable here. Generally, it can be observed that the
relative position of voting rules does not vary greatly across
different probability models. In particular, the proportional
cluster can be observed in all maps.

5 Summary
We introduced a framework for comparing multiwinner vot-
ing rules based on the committees they select. This frame-
work gives a principled approach to identifying similarity of
voting rules. When contrasted with axiomatic analysis, we
see that some rules (seq-Phragmén and seq-PAV) are not only
close to strongly proportional rules (Equal Shares and PAV),
but are also indistinguishable from an axiomatic point of view
in our dataset. This indicates that our distance-based ap-
proach indeed offers a finer view of multiwinner rules, and
thus complements a precise axiomatic analysis.
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